Home page  
Русский English

Site search


  Forgot your password?

Vol. 23 No. 2, 2020

Print version Print version

Quasi-periodic dynamics in a model of “predator–prey” communities coupled by migration

Kurilova E.V., Kulakov M.P.

DOI: 10.31433/2618-9593-2020-23-2-3-11

образец_PDF.jpgPDF (2774)

The article is devoted to the dynamics of two coupled non-identical predator–prey communities with growth in prey population and functional response of predators of the Hollings type II. The authors investigated the formation mechanisms of complex spatial-temporal dynamic structures. These structures are characterized by both fast and slow changes in the size of populations, and by various ratios of synchronous and non-synchronous dynamics in certain periods. We described the transition scenarios, from different types of regular burst dynamics to quasi-periodic dynamics, when differences in the communities under consideration vary.

predator–prey, migration, synchronization, bifurcation, tonic spiking and bursting

1. Кулаков М.П., Курилова Е.В., Фрисман Е.Я. Синхронизация, тоническая и пачечная динамика в модели двух сообществ «хищник-жертва», связанных миграциями хищника. DOI 10.17537/2019.14.588 // Математическая биология и биоинформатика. 2019. Т. 14, № 2. С. 588–611.
2. Курилова Е.В., Кулаков М.П., Фрисман Е.Я. Последствия синхронизации колебаний численностей в двух взаимодействующих сообществах типа «хищник – жертва» при насыщении хищника и лимитировании численности жертвы // Информатика и системы управления. 2015. Т. 45, № 3. С. 24–34.
3. Фрисман Е.Я., Кулаков М.П., Ревуцкая О.Л., Жданова О.Л., Неверова Г.П. Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций. DOI 10.20537/2076-7633-2019-11-1-119-151 // Компьютерные исследования и моделирование. 2019. Т. 11, № 1. С. 119–151.
4. Bakhanova Y.V., Kazakov A.O., Korotkov A.G., Levanova T.A., Osipov G.V. Spiral attractors as the root of a new type of “bursting activity” in the Rosenzweig–MacArthur model. DOI 10.1140/epjst/e2018-800025-6 // Eur. Phys. J. Special. 2018. Vol. 227. P. 959–970.
5. Bazykin A.D. Nonlinear Dynamics of Interacting Populations / Ed. by Alexander I. Khibnik and Bernd Krauskopf. – World Scientific Publishing Co. Pte. Ltd. 1998. 216 p. DOI 10.1142/2284.
6. Comins H.N., Hassell M.P., May R.M. The spatial dynamics of host-parasitoid systems. DOI 10.2307/5627 // J. Animal Ecology. 1992. Vol. 61. P. 735–748.
7. Ersöz E.K., Desroches M., Mirasso C.R., Rodrigues S. Anticipation via canards in excitable systems. DOI 10.1063/1.5050018 // Chaos. 2019. Vol. 013111, N. 29.
8. Goldwyn E.E., Hastings A. When can dispersal synchronize populations? DOI 10.1016/j.tpb.2007.11.012 // Theoretical Population Biology. 2008. Vol. 73, No. 3. P. 395–402.
9. Huang T., Zhang H. Bifurcation, chaos and pattern formation in a space-and time-discrete predatorprey system. DOI 10.1016/j.chaos.2016.05.009 // Chaos, Solitons & Fractals. 2016. Vol. 91. P. 92–107.
10. Mukhopadhyay B., Bhattacharyya R. Role of predator switching in an eco-epidemiological model with disease in the prey. DOI 10.1016/j.ecolmodel.2009.01.016 // Ecological Modelling. 2009. Vol. 220, No. 7. P. 931–939. 
11. Rinaldi S., Muratori S. Slow-fast limit cycles in predator-prey models. DOI 10.1016/0304-3800(92)90023-8 // Ecological Modelling. 1992. Vol. 61. P. 287–308.
12. Saifuddin Md., Biswas S., Samanta S., Sarkar S., Chattopadhyay J. Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator. DOI 10.1016/j.chaos.2016.06.009 // Chaos, Solitons & Fractals. 2016. Vol. 91. P. 270–285.

Powered by Bitrix Site Manager
Powered by
Bitrix Site Manager

Copyright © 2001-2006 Bitrix