Home page  
 
Русский English


Site search


Authorization

  Forgot your password?


Vol. 18 No. 2, 2015

Print version Print version

Thermodynamic calculations of the parameters of hydrothermal environment in the modeling of biosphere origin

Author(s):
Kompanichenko V.N., Avchenko O.V.

образец_PDF.jpgPDF (7043 К)   PP. 5-13.

Abstract:
Elaborating a hydrothermal scenario of the biosphere origin, it was made thermodynamic calculations of balances in hydrothermal solution, including its solid, liquid and gaseous phases. For the initial standards it has been taken real structures of the Archaean meta-basic rock and chloride-sodium thermal solution from the Uzon caldera in Kamchatka. The calculations were made at temperatures from 25 to 150º, pressure – from 1 to 50 bars, and the water-rock ratio from 1000 to 0,05. Their results show considerable fluctuations in chemism of the liquid phase at the parameters change. It means that hydrothermal solution is characterized by considerable fluctuations of the parameters during its rise to the surface. Such fluctuations are considered as an important condition for the emergence of primary forms of a life on the early Earth.

Keywords:
hydrothermal system, hydrochemical composition, pressure, temperature, calculation, fluctuation, biosphere origin

References:
1. Авченко О.В. Петрология Охотского метаморфического комплекса. М.: Наука, 1977.
2. Авченко О.В., Чудненко К.В., Александров И.А. Основы физико-химического моделирования минеральных систем. М.: Наука, 2009. 229 с.
3. Авченко О.В., Чудненко К.В., Александров И.А., Худоложкин В.О. Адаптация программного комплекса «Селектор_С» к решению проблем петрогенезиса метаморфических пород // Геохимия. 2011. № 2. С.149–164.
4. Кирюхин А.В., Лесных М.Д., Поляков А.Ю. Естественный гидродинамический режим Мутновского геотермального резервуара и его связь с сейсмической активностью // Вулканология и сейсмология. 2002. №1. С. 51–60.
5. Кирюхин А.В., Москалев Л.К., Поляков А.Ю., Чернев И.И. Изменение термогидродинамического и газогидрохимического режима резервуара в процессе эксплуатации Мутновского геотермального месторождения // XVIII Совещание по подземным водам Сибири и Дальнего Востока. Иркутск, 2006. С. 267–271.
6. Компаниченко В.Н. Этапы перехода от доклеточных органических микросистем к первичным сообществам прокариот // Известия РАН. Сер. биологическая. 2011. № 5. С. 630–640.
7. Компаниченко В.Н., Шлюфман К.В. Амплитудно-частотная характеристика колебаний давления пароводяной смеси в Верхне-Мутновской гидротермальной системе // Вулканология и сейсмология. 2013. № 5. С. 51–58.
8. Чудненко К.В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск: Академическое издательство «Гео», 2010. 287с.
9. Brown Kevin M., Tryon Michael D., DeShon Heather R., Dorman LeRoy M. and Schwartz Susan Y. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone // Earth and Planetary Science Letters. 2005. Vol. 238, N 1–2. P. 189–203.
10. Cleaves HJ., Aubrey AD., Bada JL. An evaluation of critical parameters for abiotic peptide synthesis in submarine hydrothermal systems // Origins of Life and Evolution of Biospheres. 2009. Vol. 39. P. 109–126.
11. Corliss JB., Baross JA., Hoffman SE. An hypothesis concerning the relationship between submarine hot springs and the origin of life on the Earth // Oceanological Acta. 1981. SP 4. P. 59–69.
12. Deamer DW. Prebiotic amphiphilic compounds. In: Seckbach J (ed) Origins. Kluwer, Netherlands, 2004. P. 75–89.
13. Diener J.F.A., Powell R., White R.W., Holland T.J.B. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O // Journal of Metamorphic Geology. 2007. Vol. 25. P. 631–656.
14. Green E., Holland T.J.B., Powell R. An order disorder model for omphacitic pyroxenes in the system jadeite – diopside – hedenbergite – acmite, with applications to eclogitic rocks // American Mineralogist. 2007. Vol. 92, N 7. P. 1181–1189.
15. Holland T.J.B., Powell R. An internally consistent thermodynamic data set for phases of petrological interest // Journal of Metamorphic Geology. 1998. Vol. 16, N 3. P. 309–343.
16. Kompanichenko V.N. Inversion concept of the origin of life // Origins of Life and Evolution of Biospheres. 2012. Vol. 42 (2–3). P. 153–178.
17. Kompanichenko V.N., Poturay V.A., Shlufman K.V. Hydrothermal systems of Kamchatka are models of the prebiotic environment. Origin of Life and Evolution of Biospheres. 2015. DOI 10.1007/s11084-015-9429-2.
18. Kralj Pt., Kralj Pol. Thermal and mineral waters in north-eastern Slovenia // Environmental Geology. 2000. Vol. 39, N 5. P. 488–498.
19. Lee B.I., Kesler M.G. Generalized thermodynamic correlations based on three parameter corresponding // AICHEJ. 1975. Vol. 21, N 3. P. 510–527.
20. Marshall WL. Hydrothermal synthesis of amino acids // Geochimical et Cosmochimical Acta. 1994. Vol. 58. P. 2099–2106.
21. Martin W, Russell JM. On the origin of biochemistry at an alkaline hydrothermal vent // Philosophical Transactions of Royal Society B. 2007. Vol. 362. P. 1887–1925.
22. Stefansson V. The Krafla geothermal field, North-East Iceland // Geothermal Systems: Principles and Case Histories. New York: Perhamon Press, 1981. P. 271–294.
23. Tajcmanova L., Connolly J.A.D., Cesare B. A thermodynamic model for titanium and ferric iron solution in biotite // Journal of Metamorphic Geology. 2009. Vol. 27. P. 153–165.
24. White R.W., Powell R., Clarke G.L. The interpretation of reaction textures in Fe_rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 // Journal of Metamorphic Geology. 2002. Vol. 20. P. 41–55.
25. White R.W., Pomroy N.E., Powell R. An in situ metatexite–diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia // Journal of Metamorphic Geology. 2005. Vol. 23. P. 579–602.



Powered by Bitrix Site Manager
Powered by
Bitrix Site Manager

Copyright © 2001-2006 Bitrix