Home page  
 
Русский English


Site search


Authorization

  Forgot your password?


Vol. 22 No. 2, 2019

Print version Print version

Reconstruction of climatic changes in the late pleistocene-holocene using isotopic composition of hydrothermal formations in the arctic

Author(s):

Malov A.I.

DOI: 10.31433/2618-9593-2019-22-2-40-47

образец_PDF.jpgPDF (1876 К)

Abstract:
New data were obtained by the author on the current activity of radiocarbon and carbon-13 concentrations in groundwater and travertines of the Pymvashor hydrothermal system located at the junction of the Pechora plate of the East European Platform and the Pre-Ural down warp. Thermal waters and travertines have been dated using isotopes carbon, uranium-234, uranium-238, and thorium-230. It is established that the age of travertine varies from a maximum of 7.7±1.5 thousand years in the upper part of the travertine structure to a minimum of 2.5±0.5 thousand years in the lower one, which is associated with neotectonic uplift in the travertine deposits area and, accordingly, sequential formation of 12 travertine terraces. According to the original author's method, the radiocarbon activity in ancient thermal water was estimated during the deposition of travertine in the period from 7.7±1.5 to 2.5±0.5 thousand years ago. The author has also calculated the initial activity of radiocarbon in this water over the period from 13.9±1.5 to 6.2 thousand years ago taking into account the infl uence of isotopic dilution and exchange processes in the aeration zone and aquifers. He established that the initial activity of radiocarbon and concentration of carbon-13 decreased in young waters as compared to ancient ones. It is associated with the climatic change. Decreases in carbon-13 concentration of soil carbon dioxide and in the initial activity of radiocarbon took place due to warming and moistening of the climate, decomposition of fossil organic matter and a decrease in the activity of atmospheric radiocarbon. An increase in carbonate dissolution is also possible, due to an increase in the proportion of meteoric waters in thermal system, and an increase in carbon exchange between dissolved inorganic carbon and soil carbon dioxide because of permafrost melting.

Keywords:
carbon-14; changing of the climate; uranium isotopes; thorium-230; travertine

References:
1. Любас А.А. Палеореконструкция среды обитания пресноводных моллюсков в неоген-четвертичных водотоках с экстремальными природными условиями: автореф. диссертации. Архангельск: ИЭПС УрО РАН, 2015. URL: http://disser.herzen.spb.ru/Preview/Vlojenia/000000248_Disser.pdf (дата обращения: 22.03.2019).
2. Малов А.И. Использование геологических реперов для оценки времени нахождения подземных вод в водоносном горизонте по уран-изотопным данным на примере Северо-Двинской впадины // Литология и полезные ископаемые. 2013. Т. 48, № 3. C. 274–285. URL: https://elibrary.ru/item.asp?id=18901162 (дата обращения: 22.03.2019).
3. Alm T., Vorren R.D. Climate and plants during the last ice age // Plant Life. Tromsø: University of Tromsø, Museum, 1993. P. 4–7.
4. Donahue D.J., Linick T.W., Jull A.J.T. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements // Radiocarbon. 1990. Vol. 32. P. 135‒142. DOI: 10.2458/azu_js_rc.32.1261.
5. Genty D., Massault M. Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France ‒ modelling and comparison with other stalagmite records // Geochimica Cosmochimica Acta. 1999. Vol. 63. P. 1537–1548. DOI: 10.1016/S0016-037(99)00122-2.
6. Geyh M.A. Reflections on the 230Th/U dating of dirty material // Geochronometria. 2001. Vol. 20. P. 9‒14.
7. Han L-F., Plummer L.N., Aggarwal P. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating // Chemical Geology. 2012. Vol. 318–319. P. 88–112. URL: https://doi.org/10.1016/j.chemgeo.2012.05.004 (дата обращения: 22.03.2019).
8. Han L-F., Plummer L.N., Aggarwal P. The curved 14C vs. δ13C relationship in dissolved inorganic carbon: A useful tool for groundwater age- and geochemical interpretations // Chemical Geology. 2014. Vol. 387. P. 111–125. DOI: 10.1016/j.chemgeo.2014.08.026.
9. Han L-F., Plummer L.N. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater // Earth-Science Reviews. 2016. Vol. 152. P. 119‒142. URL: https://doi.org/10.1016/j.earscirev.2015.11.004 (дата обращения: 22.03.2019).
10. Kronfeld J., Vogel J.C., Rosenthal E. et al. Age and paleoclimatic implications of bet shean travertines // Quaternary Research. 1988. Vol. 30. P. 298‒303.
11. Мalov A.I. Estimation of uranium migration parameters in sandstone aquifers. Journal of Environmental Radioactivity. 2016; 153:61–67. DOI: 10.1016/j.jenvrad.2015.11.006.
12. Malov A.I., Bolotov I.N., Pokrovsky O.S. et al. Modeling past and present activity of a subarctic hydrothermal system using O, H, C, U and Th isotopes // Applied Geochemistry. 2015. Vol. 63. P. 93‒104. URL: https://doi.org/10.1016/j.apgeochem.2015.07.003 (дата обращения: 22.03.2019).
13. Martın-Algarra A., Martın-Martın M., Andreo B. et al. Sedimentary patterns in perched spring travertines near Granada (Spain) as indicators of the paleohydrological and paleoclimatological evolution of a karst massif // Sedimentary Geology. 2003. Vol. 161. P. 217‒228. DOI:10.1016/S0037-0738(03)00115-5.
14. Mook W.G., van der Plicht J. Reporting 14C activities and concentrations // Radiocarbon. 1999. Vol. 41. P. 227‒239.
15. Reimer P.J., Bard E., Bayliss A. et al. IntCal13 and Marine13 radiocarbon age calibration curves, 0―50,000 yrs cal BP // Radiocarbon. 2013. Vol. 55. P. 1869‒1887. URL: https://doi.org/10.2458/azu_js_rc.55.16947 (дата обращения: 22.03.2019).
16. Rudzka D., McDermotta F., Baldinib L.M. et al. The coupled δ13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems; insights into soil and cave processes at climatic transitions // Geochimica Cosmochimica Acta. 2011. Vol. 75. P. 4321‒4339.
17. Schwarcz H.P., Latham A.G. Uranium series dating of contaminated calcite using leachates alone // Chemical Geology. 1989. Vol. 80. P. 35‒43.
18. Stuiver M., Polach H.A. Reporting of 14C data // Radiocarbon. 1977. Vol. 19. P. 355–363.
19. Stuiver M. Workshop on 14C data reporting // Radiocarbon. 1980. Vol. 22. P. 964–966.
20. Wong C.I., Breecker D.O. Advancements in the use of speleothems as climate archives // Quaternary Science Reviews. 2015. Vol. 127. P. 1‒18. URL: https://doi.org/10.1016/j.quascirev.2015.07.019 (дата обращения: 22.03.2019).



Powered by Bitrix Site Manager
Powered by
Bitrix Site Manager

Copyright © 2001-2006 Bitrix